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Language Modeling

Version 1: Compute P(w1, w2, w3, w4, w5) = P(W)
:probability of a sequence of words

P(He ate the cake with the fork) = ?

Version 2: Compute P(w5| w1, w2, w3, w4) 
= P(wn| w1, w2, …, wn-1)

:probability of a next word given history
P(fork | He ate the cake with the) = ?

Applications:
● Auto-complete: What word is next? 
● Machine Translation: Which translation is most likely?
● Spell Correction: Which word is most likely given error?
● Speech Recognition: What did they just say?

“eyes aw of an” 
(example from Jurafsky, 2017;   did you say "giraffe ski 2,017"?)
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Observation: V1 and V2 are equivalent!
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Language Modeling: How to Estimate?

Observation: Solving V2 give us V1!

V1: Compute P(w1, w2, w3, w4, w5) = P(W)
V2: Compute P(w5| w1, w2, w3, w4) = P(wn| w1, w2, …, wn-1)

P(A,B) = P(A)P(B|A)

P(A, B, C) = P(A)P(B|A)P(C| A, B) 

The Chain Rule: 

P(X1, X2,…, Xn) = P(X1)P(X2|X1)P(X3|X1, X2)...P(Xn|X1, ..., Xn-1)

LM version 1 LM version 2
LM version 1 LM version 2

P(X1, X2,…, Xn) = P(X1, X2,…, Xn-1)P(Xn|X1, ..., Xn-1)
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Language Modeling: How to Estimate?

Compute P(w5| w1, w2, w3, w4) = P(wn| w1, w2, …, wn-1)

A solution: Estimate from shorter sequences. 

Problem: even the Web isn’t large enough to enable 
good estimates of most phrases. 

Chain-Rule: 

Markov Assumption:

P(Xn| X1,…, Xn-1)  ≈ P(Xn| Xn-k, …, Xn-1)    where k < n

Thus, P(X1,…, Xn)  ≈ P(Xn| Xn-k, …, Xn-1)P(Xn-1|X(n-1)-k, …, Xn-2) … P(X1)



Language Modeling: How to Estimate?
Compute P(w5| w1, w2, w3, w4) = P(wn| w1, w2, …, wn-1)

Unigram Model: k = 0; 
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Language Modeling: How to Estimate?
Compute P(w5| w1, w2, w3, w4) = P(wn| w1, w2, …, wn-1)

Unigram Model: k = 0; Bigram Model: k = 1; 

Example generated sentence:

outside, new, car, parking, lot, of, the, agreement, reached

P(X1 = “outside”, X2=”new”, X3 = “car”, ....) 
   ≈ P(X1=“outside”) * P(X2=”new”|X1 = “outside) * P(X3=”car” | X2=”new”) * ...
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Building a model (or system / API) that can answer the following:

a sequence of 
natural language 

Language 
Model

How common is this 
sequence?

What is the next word 
in the sequence?

Training Corpus
training

(fit, learn)

Food corpus from Jurafsky (2018). Samples: 

can you tell me about any good cantonese restaurants close by

mid priced thai food is what i’m looking for

tell me about chez panisse

can you give me a listing of the kinds of food that are available

i’m looking for a good place to eat breakfast

when is caffe venezia open during the day
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first word \ 
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Example from (Jurafsky, 2017)
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Training Corpus
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Example from (Jurafsky, 2017)

Bigram model: 
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Language Modeling

Building a model (or system / API) that can answer the following:

a sequence of 
natural language 

Language 
Model

How common is this 
sequence?

What is the next word 
in the sequence?

Training Corpus
training

(fit, learn)

Example from (Jurafsky, 2017)

Bigram model: 

Need to estimate:  P(Xi | Xi-1) = count(Xi-1 Xi) / count(Xi-1)

Trigram model: 

Need to estimate:  P(Xi | Xi-1, Xi-2) = count(Xi-2 Xi-1 Xi) / count(Xi-2 Xi-1) 
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Evaluation

a sequence of 
natural language 

Trained
Language 

Model

What is the next word 
in the sequence?Test Corpus

Perplexity

Apply Chain Rule:Apply Chain Rule:

Thus, perplexity
          for Bigrams: 

Reasoning: 
1) Inverse of probability 

(i.e. minimize perplexity = maximize likelihood)
2) (weighted) average branching factor

Qualitatively: Prefers real sentences 
(sequences that are more grammatical, make sense). 



Evaluation Summary

● Use training set to "learn model" 
(i.e. to store counts, from which we can derive probability for any p(w

i
| w

i-1
, w

i-2
)

● Use held-out testing set to evaluate
● Perplexity -- metric for scoring how well learned model works on test. 

(an intrinsic evaluation)

Example from (Jurafsky, 2017)



Evaluation Summary

● Use training set to "learn model" 
(i.e. to store counts, from which we can derive probability for any p(w

i
| w

i-1
, w

i-2
)

● Use held-out testing set to evaluate
● Perplexity -- metric for scoring how well learned model works on test. 

(an intrinsic evaluation)

● Extrinsic evaluation: Test on task accuracies
○ machine translation: does it improve translation accuracy
○ autocomplete: do users like the suggestions
○ speech recognition: does it improve transcription accuracy
○ spelling corrector, 

etc… 



● Use log probability for assessing perplexity to keep numbers reasonable and 
save computation.
(uses addition rather than multiplication)

● Use Out-of-vocabulary (OOV) (unknown word token)
Choose a minimum frequency or total vocabulary size and mark as <OOV> 

● Sentence start and end: <s> this is a sentence </s>
Advantage: models word probability at beginning or end. 

● Alternative to backoff: Interpolation

Practical Considerations for LMs:



● Use log probability for assessing perplexity to keep numbers reasonable and save 

computation. (uses addition rather than multiplication)

● Use Out-of-vocabulary (OOV) (unknown word token)

Choose a minimum frequency or total vocabulary size and mark as <OOV> 

● Sentence start and end: <s> this is a sentence </s>

Advantage: models word probability at beginning or end. 

● This is also "auto-regressive" or generative language modeling. 
"auto-encoding" using context on both sides – use for creating embeddings. 

● Alternative to backoff: Interpolation

Practical Considerations for LMs:



Problem? 



Problem? 

● High probabilities in context of rare words

● Zero probabilities for when count was zero (but is that realistic?)



Zeros!
first word \ 

second word Bigram Counts



Zeros and Smoothing

Laplace (“Add one”) smoothing: add 1 to all counts

first word \ 
second word Bigram Counts



Unsmoothed probs

first word(Xi-1) \ 
second word (Xi) P(Xi | Xi-1)

Example from (Jurafsky, 2017)



Smoothed

first word(Xi-1) \ 
second word (Xi) P(Xi | Xi-1)

Example from (Jurafsky, 2017)

(vocabulary size)



Why Smoothing? Generalizes

Original

With Smoothing

(Example from Jurafsky / Originally Dan Klein)



Why Smoothing? Generalizes
Add-one is blunt: 

can lead to very large changes. 

More Advanced: 

Informative Prior: 
Add unigram probability

More advanced:

● Good-Turing Smoothing
Kneser-Nay Smoothing

^ outside scope for now. We will 
eventually cover, even stronger, deep 
learning based models. 



Example how to produce language generator

Training: 

● Count unigrams, bigrams, and trigrams

● Create function to calculate probabilities for  unigram, bigram, and 

trigram models (over training, with smoothing)



Example how to produce language generator

Training: 

● Count unigrams, bigrams, and trigrams

● Create function to calculate probabilities for  unigram, bigram, and 

trigram models (over training, with smoothing)

Generation

● Create function: Given previous word or previous 2 words, take a 

random draw from what words are most likely to be next. 
Trigram model and bigram when possible (high counts)

Backing off to bigram or even unigram, if necessary



Language Modeling Summary

● Two versions of assigning probability to sequence of words

● Applications

● The Chain Rule, The Markov Assumption:

● Training a unigram, bigram, trigram model based on counts

● Evaluation: Perplexity

● Zeros, Low Counts,  and Generalizability

● Add-one smoothing 



Limitation: Long distance dependencies

The horse which was raced past the barn tripped . 


