
Introduction to Language
Modeling

H. Andrew Schwartz

CSE538 - Spring 2024

Language Modeling

-- assigning a probability to sequences of words.

Language Modeling

-- assigning a probability to sequences of words.

Version 1: Compute P(w1, w2, w3, w4, w5) = P(W)
:probability of a sequence of words

Language Modeling

-- assigning a probability to sequences of words.

Version 1: Compute P(w1, w2, w3, w4, w5) = P(W)
:probability of a sequence of words

Version 2: Compute P(w5| w1, w2, w3, w4)
= P(wn| w1, w2, …, wn-1)

:probability of a next word given history

Language Modeling

Version 1: Compute P(w1, w2, w3, w4, w5) = P(W)
:probability of a sequence of words

P(He ate the cake with the fork) = ?

Version 2: Compute P(w5| w1, w2, w3, w4)
= P(wn| w1, w2, …, wn-1)

:probability of a next word given history
P(fork | He ate the cake with the) = ?

Language Modeling

Version 1: Compute P(w1, w2, w3, w4, w5) = P(W)
:probability of a sequence of words

P(He ate the cake with the fork) = ?

Version 2: Compute P(w5| w1, w2, w3, w4)
= P(wn| w1, w2, …, wn-1)

:probability of a next word given history
P(fork | He ate the cake with the) = ?

 'fork' 'clever' candles' 'a' 'ice' 'other'

Language Modeling

Version 1: Compute P(w1, w2, w3, w4, w5) = P(W)
:probability of a sequence of words

P(He ate the cake with the fork) = ?

Version 2: Compute P(w5| w1, w2, w3, w4)
= P(wn| w1, w2, …, wn-1)

:probability of a next word given history
P(fork | He ate the cake with the) = ?

Applications:
● Auto-complete: What word is next?
● Machine Translation: Which translation is most likely?
● Spell Correction: Which word is most likely given error?
● Speech Recognition: What did they just say?

“eyes aw of an”
(example from Jurafsky, 2017; did you say "giraffe ski 2,017"?)

Timeline: Language Modeling and Vector Semantics

GPT4

RoBERTA

2018

2010

2003

1948

1980

~logarithmic scale

1913 Markov: Probability that next letter would be vowel or consonant.

Language Models
Vector Semantics
LMs + Vectors

Timeline: Language Modeling and Vector Semantics

GPT4

2018

2010

2003

1948

1980

~logarithmic scale

1913 Markov: Probability that next letter would be vowel or consonant.

Language Models
Vector Semantics
LMs + Vectors

These (or similar) are
behind almost all
state-of-the-art
modern NLP systems

RoBERTA

Timeline: Language Modeling and Vector Semantics

Shannon: A Mathematical Theory of Communication (first digital language model)

BERT

ELMO

GPT

2018

2010

2003

1948

1980

~logarithmic scale

Blei et al.: [LDA Topic Modeling]

Osgood: The
Measurement
of Meaning

Deerwater:
Indexing by Latent
Semantic Analysis
(LSA)

Brown et al.: Class-based ngram models of
 natural language

Switzer: Vector
Space Models

Bengio:
Neural-net
based
embeddings

Mikolov: word2vec

Collobert and
Weston: A unified
architecture for
natural language
processing: Deep
neural networks...

Jelinek et al. (IBM): Language Models for Speech Recognition

1913 Markov: Probability that next letter would be vowel or consonant.

Language Models
Vector Semantics
LMs + Vectors

GPT4

RoBERTA

These (or similar) are
behind almost all
state-of-the-art
modern NLP systems

Timeline: Language Modeling and Vector Semantics

Shannon: A Mathematical Theory of Communication (first digital language model)

2018

2010

2003

1948

1980

~logarithmic scale

1913 Markov: Probability that next letter would be vowel or consonant.

Language Models
Vector Semantics
LMs + Vectors

GPT4

RoBERTA

Timeline: Language Modeling and Vector Semantics

Shannon: A Mathematical Theory of Communication (first digital language model)

GPT3.5

XLNet
RoBERTA

2018

2010

2003

1948

1980

~logarithmic scale

Osgood: The
Measurement
of Meaning

1913 Markov: Probability that next letter would be vowel or consonant.

Language Models
Vector Semantics
LMs + Vectors

(Li et al. ,2015; Jurafsky et al., 2019)

Timeline: Language Modeling and Vector Semantics

Shannon: A Mathematical Theory of Communication (first digital language model)

2018

2010

2003

1948

1980

~logarithmic scale

Osgood: The
Measurement
of Meaning

Switzer: Vector
Space Models

Jelinek et al. (IBM): Language Models for Speech Recognition

1913 Markov: Probability that next letter would be vowel or consonant.

Language Models
Vector Semantics
LMs + Vectors

GPT4

RoBERTA

Timeline: Language Modeling and Vector Semantics

Shannon: A Mathematical Theory of Communication (first digital language model)

2018

2010

2003

1948

1980

~logarithmic scale

Blei et al.: [LDA Topic Modeling]

Osgood: The
Measurement
of Meaning

Deerwater:
Indexing by Latent
Semantic Analysis
(LSA)

Brown et al.: Class-based ngram models of
 natural language

Switzer: Vector
Space Models

Bengio:
Neural-net
based
embeddings

Jelinek et al. (IBM): Language Models for Speech Recognition

1913 Markov: Probability that next letter would be vowel or consonant.

Language Models
Vector Semantics
LMs + Vectors

GPT4

RoBERTA

Timeline: Language Modeling and Vector Semantics

Shannon: A Mathematical Theory of Communication (first digital language model)

2018

2010

2003

1948

1980

~logarithmic scale

Blei et al.: [LDA Topic Modeling]

Osgood: The
Measurement
of Meaning

Deerwater:
Indexing by Latent
Semantic Analysis
(LSA)

Brown et al.: Class-based ngram models of
 natural language

Switzer: Vector
Space Models

Bengio:
Neural-net
based
embeddings

Mikolov: word2vec

Collobert and
Weston: A unified
architecture for
natural language
processing: Deep
neural networks...

Jelinek et al. (IBM): Language Models for Speech Recognition

1913 Markov: Probability that next letter would be vowel or consonant.

Language Models
Vector Semantics
LMs + Vectors

GPT4

RoBERTA

Timeline: Language Modeling and Vector Semantics

Shannon: A Mathematical Theory of Communication (first digital language model)

BERT

ELMO

GPT

2018

2010

2003

1948

1980

~logarithmic scale

Blei et al.: [LDA Topic Modeling]

Osgood: The
Measurement
of Meaning

Deerwater:
Indexing by Latent
Semantic Analysis
(LSA)

Brown et al.: Class-based ngram models of
 natural language

Switzer: Vector
Space Models

Bengio:
Neural-net
based
embeddings

Mikolov: word2vec

Collobert and
Weston: A unified
architecture for
natural language
processing: Deep
neural networks...

Jelinek et al. (IBM): Language Models for Speech Recognition

1913 Markov: Probability that next letter would be vowel or consonant.

Language Models
Vector Semantics
LMs + Vectors

GPT4

RoBERTA

Language Modeling
Version 1: Compute P(w1, w2, w3, w4, w5) = P(W)

:probability of a sequence of words

Version 2: Compute P(w5| w1, w2, w3, w4)
= P(wn| w1, w2, …, wn-1)

:probability of a next word given history

Simple Solution

Version 1: Compute P(w1, w2, w3, w4, w5) = P(W)
:probability of a sequence of words

P(He ate the cake with the fork) =

count(He ate the cake with the fork)
 count(* * * * * * *)

Simple Solution: The Maximum Likelihood Estimate

Version 1: Compute P(w1, w2, w3, w4, w5) = P(W)
:probability of a sequence of words

P(He ate the cake with the fork) =

count(He ate the cake with the fork)
 count(* * * * * * *) total number of

observed 7grams

Simple Solution: The Maximum Likelihood Estimate

Version 1: Compute P(w1, w2, w3, w4, w5) = P(W)
:probability of a sequence of words

P(He ate the cake with the fork) =

count(He ate the cake with the fork)
 count(* * * * * * *)

P(fork | He ate the cake with the) =

count(He ate the cake with the fork)
 count(He ate the cake with the *)

V1:

V2:

Simple Solution: The Maximum Likelihood Estimate

Version 1: Compute P(w1, w2, w3, w4, w5) = P(W)
:probability of a sequence of words

P(He ate the cake with the fork) =

count(He ate the cake with the fork)
 count(* * * * * * *)

P(fork | He ate the cake with the) =

count(He ate the cake with the fork)
 count(He ate the cake with the *)

V1:

V2:

Problem: even the Web isn’t large enough to enable
good estimates of most phrases.

Simple Solution: The Maximum Likelihood Estimate

A solution: Estimate from shorter sequences.

V1: Compute P(w1, w2, w3, w4, w5) = P(W)
V2: Compute P(w5| w1, w2, w3, w4) = P(wn| w1, w2, …, wn-1)

Problem: even the Web isn’t large enough to enable
good estimates of most phrases.

Simple Solution: The Maximum Likelihood Estimate

A solution: Estimate from shorter sequences.
Observation: V1 and V2 are equivalent!

V1: Compute P(w1, w2, w3, w4, w5) = P(W)
V2: Compute P(w5| w1, w2, w3, w4) = P(wn| w1, w2, …, wn-1)

Problem: even the Web isn’t large enough to enable
good estimates of most phrases.

Language Modeling: How to Estimate?

Observation: V1 and V2 are equivalent!

V1: Compute P(w1, w2, w3, w4, w5) = P(W)
V2: Compute P(w5| w1, w2, w3, w4) = P(wn| w1, w2, …, wn-1)

Language Modeling: How to Estimate?

Observation: V1 and V2 are equivalent!

V1: Compute P(w1, w2, w3, w4, w5) = P(W)
V2: Compute P(w5| w1, w2, w3, w4) = P(wn| w1, w2, …, wn-1)

P(B|A) = P(B, A) / P(A) ⇔ P(A)P(B|A) = P(B,A)

Language Modeling: How to Estimate?

Observation: V1 and V2 are equivalent!

V1: Compute P(w1, w2, w3, w4, w5) = P(W)
V2: Compute P(w5| w1, w2, w3, w4) = P(wn| w1, w2, …, wn-1)

P(B|A) = P(B, A) / P(A) ⇔ P(A)P(B|A) = P(B,A) P(B|A) = P(B, A) / P(A) ⇔ P(A)P(B|A) = P(B,A) = P(A,B)

P(A,B) = P(A)P(B|A)

Language Modeling: How to Estimate?

Observation: V1 and V2 are equivalent!

V1: Compute P(w1, w2, w3, w4, w5) = P(W)
V2: Compute P(w5| w1, w2, w3, w4) = P(wn| w1, w2, …, wn-1)

P(B|A) = P(B, A) / P(A) ⇔ P(A)P(B|A) = P(B,A)
P(A,B) = P(A)P(B|A)

Language Modeling: How to Estimate?

Observation: V1 and V2 are equivalent!

V1: Compute P(w1, w2, w3, w4, w5) = P(W)
V2: Compute P(w5| w1, w2, w3, w4) = P(wn| w1, w2, …, wn-1)

P(B|A) = P(B, A) / P(A) ⇔ P(A)P(B|A) = P(B,A) P(A,B) = P(A)P(B|A)

P(A, B, C) = P(A)P(B|A)P(C| A, B)

Language Modeling: How to Estimate?

Observation: V1 and V2 are equivalent!

V1: Compute P(w1, w2, w3, w4, w5) = P(W)
V2: Compute P(w5| w1, w2, w3, w4) = P(wn| w1, w2, …, wn-1)

P(B|A) = P(B, A) / P(A) ⇔ P(A)P(B|A) = P(B,A) P(A,B) = P(A)P(B|A)

P(A, B, C) = P(A)P(B|A)P(C| A, B)

The Chain Rule:
P(X1, X2,…, Xn) = P(X1)P(X2|X1)P(X3|X1, X2)...P(Xn|X1, ..., Xn-1)

Language Modeling: How to Estimate?

Observation: V1 and V2 are equivalent!

V1: Compute P(w1, w2, w3, w4, w5) = P(W)
V2: Compute P(w5| w1, w2, w3, w4) = P(wn| w1, w2, …, wn-1)

P(A,B) = P(A)P(B|A)

P(A, B, C) = P(A)P(B|A)P(C| A, B)

The Chain Rule:

P(X1, X2,…, Xn) = P(X1)P(X2|X1)P(X3|X1, X2)...P(Xn|X1, ..., Xn-1)

Language Modeling: How to Estimate?

Observation: Solving V2 give us V1!

V1: Compute P(w1, w2, w3, w4, w5) = P(W)
V2: Compute P(w5| w1, w2, w3, w4) = P(wn| w1, w2, …, wn-1)

P(A,B) = P(A)P(B|A)

P(A, B, C) = P(A)P(B|A)P(C| A, B)

The Chain Rule:

P(X1, X2,…, Xn) = P(X1)P(X2|X1)P(X3|X1, X2)...P(Xn|X1, ..., Xn-1)

LM version 1 LM version 2
LM version 1 LM version 2

P(X1, X2,…, Xn) = P(X1, X2,…, Xn-1)P(Xn|X1, ..., Xn-1)

Language Modeling: How to Estimate?

Compute P(w5| w1, w2, w3, w4) = P(wn| w1, w2, …, wn-1)

A solution: Estimate from shorter sequences.

Problem: even the Web isn’t large enough to enable
good estimates of most phrases.

Chain-Rule:

Language Modeling: How to Estimate?

Compute P(w5| w1, w2, w3, w4) = P(wn| w1, w2, …, wn-1)

A solution: Estimate from shorter sequences.

Problem: even the Web isn’t large enough to enable
good estimates of most phrases.

Chain-Rule:

Markov Assumption:

P(Xn| X1…, Xn-1) ≈ P(Xn| Xn-k, …, Xn-1) where k < n

Language Modeling: How to Estimate?

Compute P(w5| w1, w2, w3, w4) = P(wn| w1, w2, …, wn-1)

A solution: Estimate from shorter sequences.

Problem: even the Web isn’t large enough to enable
good estimates of most phrases.

Chain-Rule:

Markov Assumption:

P(Xn| X1,…, Xn-1) ≈ P(Xn| Xn-k, …, Xn-1) where k < n

Thus, P(X1,…, Xn) ≈ P(Xn| Xn-k, …, Xn-1)P(Xn-1|X(n-1)-k, …, Xn-2) … P(X1)

Language Modeling: How to Estimate?
Compute P(w5| w1, w2, w3, w4) = P(wn| w1, w2, …, wn-1)

Unigram Model: k = 0;

Language Modeling: How to Estimate?
Compute P(w5| w1, w2, w3, w4) = P(wn| w1, w2, …, wn-1)

Unigram Model: k = 0; Bigram Model: k = 1;

Language Modeling: How to Estimate?
Compute P(w5| w1, w2, w3, w4) = P(wn| w1, w2, …, wn-1)

Unigram Model: k = 0; Bigram Model: k = 1;

Example generated sentence:

outside, new, car, parking, lot, of, the, agreement, reached

P(X1 = “outside”, X2=”new”, X3 = “car”,)
 ≈ P(X1=“outside”) * P(X2=”new”|X1 = “outside) * P(X3=”car” | X2=”new”) * ...

Language Modeling

Building a model (or system / API) that can answer the following:

a sequence of
natural language

Language
Model

How common is this
sequence?

What is the next word
in the sequence?

Language Modeling

Building a model (or system / API) that can answer the following:

a sequence of
natural language

Language
Model

How common is this
sequence?

What is the next word
in the sequence?

How to
build?

Language Modeling

Building a model (or system / API) that can answer the following:

a sequence of
natural language

Language
Model

How common is this
sequence?

What is the next word
in the sequence?

Training Corpus
training

(fit, learn)

How to
build?

Language Modeling

Building a model (or system / API) that can answer the following:

a sequence of
natural language

Language
Model

How common is this
sequence?

What is the next word
in the sequence?

Training Corpus
training

(fit, learn)

Food corpus from Jurafsky (2018). Samples:

can you tell me about any good cantonese restaurants close by

mid priced thai food is what i’m looking for

tell me about chez panisse

can you give me a listing of the kinds of food that are available

i’m looking for a good place to eat breakfast

when is caffe venezia open during the day

Language Modeling

Building a model (or system / API) that can answer the following:

a sequence of
natural language

Language
Model

How common is this
sequence?

What is the next word
in the sequence?

Training Corpus
training

(fit, learn)

first word \
second word Bigram Counts

Example from (Jurafsky, 2017)

Language Modeling

Building a model (or system / API) that can answer the following:

a sequence of
natural language

Language
Model

How common is this
sequence?

What is the next word
in the sequence?

Training Corpus
training

(fit, learn)

Example from (Jurafsky, 2017)

first word \
second word Bigram Counts

Language Modeling

Building a model (or system / API) that can answer the following:

a sequence of
natural language

Language
Model

How common is this
sequence?

What is the next word
in the sequence?

Training Corpus
training

(fit, learn)

Example from (Jurafsky, 2017)

Bigram model:

Need to estimate: P(Xi | Xi-1) = count(Xi-1 Xi) / count(Xi-1)

first word \
second word Bigram Counts

Language Modeling

Building a model (or system / API) that can answer the following:

a sequence of
natural language

Language
Model

How common is this
sequence?

What is the next word
in the sequence?

Training Corpus
training

(fit, learn)

Example from (Jurafsky, 2017)

Bigram model:

Need to estimate: P(Xi | Xi-1) = count(Xi-1 Xi) / count(Xi-1)

first word: xi-1 \
second word: xi P(Xi | Xi-1)

Language Modeling

Building a model (or system / API) that can answer the following:

a sequence of
natural language

Language
Model

How common is this
sequence?

What is the next word
in the sequence?

Training Corpus
training

(fit, learn)

first word(Xi-1) \
second word (Xi) P(Xi | Xi-1)

Example from (Jurafsky, 2017)

Bigram model:

Need to estimate: P(Xi | Xi-1) = count(Xi-1 Xi) / count(Xi-1)

Language Modeling

Building a model (or system / API) that can answer the following:

a sequence of
natural language

Language
Model

How common is this
sequence?

What is the next word
in the sequence?

Training Corpus
training

(fit, learn)

first word(Xi-1) \
second word (Xi) P(Xi | Xi-1)

Example from (Jurafsky, 2017)

Bigram model:

Need to estimate: P(Xi | Xi-1)count(Xi-1 Xi) / count(Xi-1)

Language Modeling

Building a model (or system / API) that can answer the following:

a sequence of
natural language

Language
Model

How common is this
sequence?

What is the next word
in the sequence?

Training Corpus
training

(fit, learn)

Example from (Jurafsky, 2017)

Bigram model:

Need to estimate: P(Xi | Xi-1) = count(Xi-1 Xi) / count(Xi-1)

Language Modeling

Building a model (or system / API) that can answer the following:

a sequence of
natural language

Language
Model

How common is this
sequence?

What is the next word
in the sequence?

Training Corpus
training

(fit, learn)

Example from (Jurafsky, 2017)

Bigram model:

Need to estimate: P(Xi | Xi-1) = count(Xi-1 Xi) / count(Xi-1)

Trigram model:

Need to estimate: P(Xi | Xi-1, Xi-2) = count(Xi-2 Xi-1 Xi) / count(Xi-2 Xi-1)

Language Modeling

Building a model (or system / API) that can answer the following:

a sequence of
natural language

Trained
Language

Model

How common is this
sequence?

What is the next word
in the sequence?

Training Corpus
training

(fit, learn)

Language Modeling

Building a model (or system / API) that can answer the following:

food
Trained

Language
Model

How common is this
sequence?

What is the next word
in the sequence?

Training Corpus
training

(fit, learn)

Language Modeling

Building a model (or system / API) that can answer the following:

a sequence of
natural language

Trained
Language

Model

How common is this
sequence?

What is the next word
in the sequence?

Training Corpus
training

(fit, learn)

Test?

Language Modeling

Building a model (or system / API) that can answer the following:

a sequence of
natural language

Trained
Language

Model

How common is this
sequence?

What is the next word
in the sequence?

Training Corpus

Test:
Feed the model X1...Xi-1 and
see how well it predicts Xi.

Test Corpus

Perplexity

Language Modeling

Building a model (or system / API) that can answer the following:

a sequence of
natural language

Trained
Language

Model

How common is this
sequence?

What is the next word
in the sequence?

Training Corpus

Test:
Feed the model X1...Xi-1 and
see how well it predicts Xi.

Test Corpus

Perplexity

Evaluation

a sequence of
natural language

Trained
Language

Model

What is the next word
in the sequence?Test Corpus

Perplexity

Evaluation

a sequence of
natural language

Trained
Language

Model

What is the next word
in the sequence?Test Corpus

Perplexity

Apply Chain Rule:

Evaluation

a sequence of
natural language

Trained
Language

Model

What is the next word
in the sequence?Test Corpus

Perplexity

Apply Chain Rule:Apply Chain Rule:

Thus, perplexity
 for Bigrams:

Evaluation

a sequence of
natural language

Trained
Language

Model

What is the next word
in the sequence?Test Corpus

Perplexity

Apply Chain Rule:Apply Chain Rule:

Thus, perplexity
 for Bigrams:

Reasoning:
1) Inverse of probability

(i.e. minimize perplexity = maximize likelihood)
2) (weighted) average branching factor

Evaluation

a sequence of
natural language

Trained
Language

Model

What is the next word
in the sequence?Test Corpus

Perplexity

Apply Chain Rule:Apply Chain Rule:

Thus, perplexity
 for Bigrams:

Reasoning:
1) Inverse of probability

(i.e. minimize perplexity = maximize likelihood)
2) (weighted) average branching factor

Qualitatively: Prefers real sentences
(sequences that are more grammatical, make sense).

Evaluation Summary

● Use training set to "learn model"
(i.e. to store counts, from which we can derive probability for any p(w

i
| w

i-1
, w

i-2
)

● Use held-out testing set to evaluate
● Perplexity -- metric for scoring how well learned model works on test.

(an intrinsic evaluation)

Example from (Jurafsky, 2017)

Evaluation Summary

● Use training set to "learn model"
(i.e. to store counts, from which we can derive probability for any p(w

i
| w

i-1
, w

i-2
)

● Use held-out testing set to evaluate
● Perplexity -- metric for scoring how well learned model works on test.

(an intrinsic evaluation)

● Extrinsic evaluation: Test on task accuracies
○ machine translation: does it improve translation accuracy
○ autocomplete: do users like the suggestions
○ speech recognition: does it improve transcription accuracy
○ spelling corrector,

etc…

● Use log probability for assessing perplexity to keep numbers reasonable and
save computation.
(uses addition rather than multiplication)

● Use Out-of-vocabulary (OOV) (unknown word token)
Choose a minimum frequency or total vocabulary size and mark as <OOV>

● Sentence start and end: <s> this is a sentence </s>
Advantage: models word probability at beginning or end.

● Alternative to backoff: Interpolation

Practical Considerations for LMs:

● Use log probability for assessing perplexity to keep numbers reasonable and save

computation. (uses addition rather than multiplication)

● Use Out-of-vocabulary (OOV) (unknown word token)

Choose a minimum frequency or total vocabulary size and mark as <OOV>

● Sentence start and end: <s> this is a sentence </s>

Advantage: models word probability at beginning or end.

● This is also "auto-regressive" or generative language modeling.
"auto-encoding" using context on both sides – use for creating embeddings.

● Alternative to backoff: Interpolation

Practical Considerations for LMs:

Problem?

Problem?

● High probabilities in context of rare words

● Zero probabilities for when count was zero (but is that realistic?)

Zeros!
first word \

second word Bigram Counts

Zeros and Smoothing

Laplace (“Add one”) smoothing: add 1 to all counts

first word \
second word Bigram Counts

Unsmoothed probs

first word(Xi-1) \
second word (Xi) P(Xi | Xi-1)

Example from (Jurafsky, 2017)

Smoothed

first word(Xi-1) \
second word (Xi) P(Xi | Xi-1)

Example from (Jurafsky, 2017)

(vocabulary size)

Why Smoothing? Generalizes

Original

With Smoothing

(Example from Jurafsky / Originally Dan Klein)

Why Smoothing? Generalizes
Add-one is blunt:

can lead to very large changes.

More Advanced:

Informative Prior:
Add unigram probability

More advanced:

● Good-Turing Smoothing
Kneser-Nay Smoothing

^ outside scope for now. We will
eventually cover, even stronger, deep
learning based models.

Example how to produce language generator

Training:

● Count unigrams, bigrams, and trigrams

● Create function to calculate probabilities for unigram, bigram, and

trigram models (over training, with smoothing)

Example how to produce language generator

Training:

● Count unigrams, bigrams, and trigrams

● Create function to calculate probabilities for unigram, bigram, and

trigram models (over training, with smoothing)

Generation

● Create function: Given previous word or previous 2 words, take a

random draw from what words are most likely to be next.
Trigram model and bigram when possible (high counts)

Backing off to bigram or even unigram, if necessary

Language Modeling Summary

● Two versions of assigning probability to sequence of words

● Applications

● The Chain Rule, The Markov Assumption:

● Training a unigram, bigram, trigram model based on counts

● Evaluation: Perplexity

● Zeros, Low Counts, and Generalizability

● Add-one smoothing

Limitation: Long distance dependencies

The horse which was raced past the barn tripped .

